Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy.

نویسندگان

  • Adam W Tsen
  • Luke A K Donev
  • Huseyin Kurt
  • Lihong H Herman
  • Jiwoong Park
چکیده

The one-dimensional structure of carbon nanotubes leads to a variety of remarkable optical and electrical properties that could be used to develop novel devices. Recently, the electrical conductance of nanotubes has been shown to decrease under optically induced heating by an amount proportional to the temperature change. Here, we show that this decrease is also proportional to the initial nanotube conductance, and make use of this effect to develop a new electrical characterization tool for nanotubes. By scanning the focal spot of a laser across the surface of a device through which current is simultaneously measured, we can construct spatially resolved conductance images of both single and arrayed nanotube transistors. We can also directly image the gate control of these devices. Our results establish photothermal current microscopy as an important addition to the existing suite of characterization techniques for carbon nanotubes and other linear nanostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown under Direct Current Bias Voltage

The electrical resistance of individual multiwalled carbon nanotubes and the thermal interface resistance of nanotube arrays are investigated as functions of dc bias voltage used during growth. Nanotubes were grown from Fe2O3 nanoparticles supported on Ti/SiO2/Si substrates by microwave plasma chemical vapor deposition (MPCVD) under dc bias voltages of -200, -100, 0, +100, and +200 V. Electrica...

متن کامل

Gating individual nanotubes and crosses with scanning probes

Atomic force microscopy tips are used to apply point-like local gates to manipulate the electrical properties of individual single-walled carbon nanotubes ~SWNT! contacted by Ti electrodes. Depleting a semiconducting SWNT at a local point along its length leads to orders of magnitude decrease of the nanotube conductance, whereas local gating to metallic SWNTs causes no change in the conductance...

متن کامل

A simple and versatile method for statistical analysis of the electrical properties of individual double walled carbon nanotubes

Double-walled carbon nanotubes (DWNTs) are potential candidates for new generation of on chip interconnections due to their nearly metallic behaviour. For such large scale integration purpose it is mandatory to characterize their electrical properties in a statistical way. We thus propose a new methodology for characterizing in one step, the electrical properties of a large population of nanotu...

متن کامل

Ballistic phonon thermal transport in multiwalled carbon nanotubes.

We report electrical transport experiments, using the phenomenon of electrical breakdown to perform thermometry, that probe the thermal properties of individual multiwalled carbon nanotubes. Our results show that nanotubes can readily conduct heat by ballistic phonon propagation. We determine the thermal conductance quantum, the ultimate limit to thermal conductance for a single phonon channel,...

متن کامل

Deposition of carbon nanotubes in commonly used sample filter media

There is no single standard technique or methodology to characterize the size, structure, number, and chemical composition of airborne carbon nanotubes.  Existing analytical instruments and analytical techniques for evaluating nanoparticle concentrations cannot simultaneously provide morphology, state of agglomeration, surface area, mass, size distribution and chemical composition data critical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2009